Quantum Computing Breakthroughs From Research To Real World Impact

Bonisiwe Shabane
-
quantum computing breakthroughs from research to real world impact

When it comes to quantum technology (QT), investment is surging and breakthroughs are multiplying. The United Nations has designated 2025 the International Year of Quantum Science and Technology, celebrating 100 years since the initial development of quantum mechanics. Our research confirms that QT is gaining widespread traction worldwide. McKinsey’s fourth annual Quantum Technology Monitor covers last year’s breakthroughs, investment trends, and emerging opportunities in this fast-evolving landscape. In 2024, the QT industry saw a shift from growing quantum bits (qubits) to stabilizing qubits—and that marks a turning point. It signals to mission-critical industries that QT could soon become a safe and reliable component of their technology infrastructure.

To that end, this year’s report provides a special deep dive into the fast-growing market of quantum communication, which could unlock the security needed for widespread QT uptake. Quantum technology encompasses three subfields: Our new research shows that the three core pillars of QT—quantum computing, quantum communication, and quantum sensing—could together generate up to $97 billion in revenue worldwide by 2035. Quantum computing will capture the bulk of that revenue, growing from $4 billion in revenue in 2024 to as much as $72 billion in 2035 (see sidebar “What is quantum technology?”). While QT will affect many industries, the chemicals, life sciences, finance, and mobility industries will see the most growth. McKinsey initiated its annual quantum technology report in 2021 to track the rapidly evolving quantum technology landscape.

We analyze three principal areas of the field: quantum computing, quantum communication, and quantum sensing. The analysis is based on input from various sources, including publicly available data, expert interviews, and proprietary McKinsey analyses. The conclusions and estimations have been cross-checked across market databases and validated through investor reports, press releases, and expert input. Because not all deal values are publicly disclosed and databases are updated continuously, our research does not provide a definitive or exhaustive list of start-ups, funding activities, investment splits, or patents and publications. Quantum technology in 2025 transitioned from research to practical industry applications, driving measurable business value. Hybrid quantum-classical solutions, quantum sensing, and quantum-safe cryptography are enabling domain-specific, real-world optimizations.

Investment and enterprise adoption surged, signaling 2025 as a turning point for commercial quantum technology. What was once a niche scientific curiosity is now delivering measurable value. In 2025, quantum technology made a leap from lab benches to industry boardrooms and production lines. Companies report quantum-inspired gains in telecom networks, logistics optimization, AI-hybrid systems, and sensing technologies. With major players aligning hardware roadmaps, enterprise pilots scaling up, and investment flooding the ecosystem, this year has undoubtedly earned the label of the ‘real-world quantum’ inflection point. Quantum computing is no longer a distant promise—it’s making tangible waves across industries in 2025.

As the technology matures, companies, governments, and research institutions are shifting from theory to action, deploying quantum solutions that tackle some of the world’s most complex challenges. Here’s how the quantum surge is reshaping sectors, with real-world examples and sources to back it up. The integration of quantum processors with classical high-performance computing (HPC) is unlocking new frontiers in optimization, simulation, and machine learning. This hybrid approach is now a commercial reality, not just a research aspiration. Oak Ridge National Laboratory (ORNL) and Quantum Brilliance partnered in 2024 to advance hybrid quantum-classical computing, leveraging diamond-based quantum accelerators alongside traditional supercomputers. This collaboration aims to boost performance for scientific simulations and industrial optimization, marking a pivotal shift from lab prototypes to operational deployments (The Quantum Insider).

Error correction remains the linchpin for scaling quantum computers. In 2025, more organizations are experimenting with logical qubits and advanced error correction schemes, moving quantum systems closer to fault tolerance. IBM’s 1,121-qubit “Condor” processor, launched in late 2024, incorporates advanced error correction protocols, enabling longer and more complex computations. This breakthrough is already being used by research partners in chemistry and materials science to simulate molecular interactions previously out of reach (Moody’s). Our mission is to build quantum computing for otherwise unsolvable problems. Marking a key step toward real-world applications, we've published a new breakthrough algorithm on our Willow quantum processor, Quantum Echoes, which demonstrates the first-ever verifiable quantum advantage.

Willow, Google Quantum AI's latest state-of-the-art quantum chip, is a big step towards developing a large-scale, error-corrected quantum computer. Read the blog and watch the video to learn more about Willow and its breakthrough achievements. View published research, blog posts, and educational resources from the Quantum AI team.

People Also Search

When It Comes To Quantum Technology (QT), Investment Is Surging

When it comes to quantum technology (QT), investment is surging and breakthroughs are multiplying. The United Nations has designated 2025 the International Year of Quantum Science and Technology, celebrating 100 years since the initial development of quantum mechanics. Our research confirms that QT is gaining widespread traction worldwide. McKinsey’s fourth annual Quantum Technology Monitor covers...

To That End, This Year’s Report Provides A Special Deep

To that end, this year’s report provides a special deep dive into the fast-growing market of quantum communication, which could unlock the security needed for widespread QT uptake. Quantum technology encompasses three subfields: Our new research shows that the three core pillars of QT—quantum computing, quantum communication, and quantum sensing—could together generate up to $97 billion in revenue...

We Analyze Three Principal Areas Of The Field: Quantum Computing,

We analyze three principal areas of the field: quantum computing, quantum communication, and quantum sensing. The analysis is based on input from various sources, including publicly available data, expert interviews, and proprietary McKinsey analyses. The conclusions and estimations have been cross-checked across market databases and validated through investor reports, press releases, and expert i...

Investment And Enterprise Adoption Surged, Signaling 2025 As A Turning

Investment and enterprise adoption surged, signaling 2025 as a turning point for commercial quantum technology. What was once a niche scientific curiosity is now delivering measurable value. In 2025, quantum technology made a leap from lab benches to industry boardrooms and production lines. Companies report quantum-inspired gains in telecom networks, logistics optimization, AI-hybrid systems, and...

As The Technology Matures, Companies, Governments, And Research Institutions Are

As the technology matures, companies, governments, and research institutions are shifting from theory to action, deploying quantum solutions that tackle some of the world’s most complex challenges. Here’s how the quantum surge is reshaping sectors, with real-world examples and sources to back it up. The integration of quantum processors with classical high-performance computing (HPC) is unlocking ...