Platform Independent Experiments On Social Media Pubmed

Bonisiwe Shabane
-
platform independent experiments on social media pubmed

Changing algorithms with artificial intelligence tools can influence partisan animosity. American Association for the Advancement of Science (AAAS) A new experiment using an AI-powered browser extension to reorder feeds on X (formerly Twitter), and conducted independently of the X platform’s algorithm, shows that even small changes in exposure to hostile political content... The findings provide direct causal evidence of the impact of algorithmically controlled post ranking on a user’s social media feed. Social media has become an important source of political information for many people worldwide. However, the platform’s algorithms exert a powerful influence on what we encounter during use, subtly steering thoughts, emotions, and behaviors in poorly understood ways.

Although many explanations for how these ranking algorithms affect us have been proposed, testing these theories has proven exceptionally difficult. This is because the platform operators alone control how their proprietary algorithms behave and are the only ones capable of experimenting with different feed designs and evaluating their causal effects. To sidestep these challenges, Tiziano Piccardi and colleagues developed a novel method that lets researchers reorder people’s social media feeds in real time as they browse, without permission from the platforms themselves. Piccardi et al. created a lightweight, non-intrusive browser extension, much like an ad blocker, that intercepts and reshapes X’s web feed in real time, leveraging large language model-based classifiers to evaluate and reorder posts based on their... This tool allowed the authors to systematically identify and vary how content expressing antidemocratic attitudes and partisan animosity (AAPA) appeared on a user’s feed and observe the effects under controlled experimental conditions.

In a 10-day field experiment on X involving 1,256 participants and conducted during a volatile stretch of the 2024 U.S. presidential campaign, individuals were randomly assigned to feeds with heightened, reduced, or unchanged levels of AAPA content. Piccardi et al. discovered that, relative to the control group, reducing exposure to AAPA content made people feel warmer toward the opposing political party, shifting the baseline by more than 2 points on a 100-point scale. Increasing exposure resulted in a comparable shift toward colder feelings toward the opposing party. According to the authors, the observed effects are substantial, roughly comparable to three years’ worth of change in affective polarization over the duration of the intervention, though it remains unknown if these effects persist...

What’s more, these shifts did not appear to fall disproportionately on any particular group of users. These shifts also extended to emotional experience; participants reported changes in anger and sadness through brief in-feed surveys, demonstrating that algorithmically mediated exposure to political hostility can shape both affective polarization and moment-to-moment emotional... “One study – or set of studies – will never be the final word on how social media affects political attitudes. What is true of Facebook might not be true of TikTok, and what was true of Twitter 4 years ago might not be relevant to X today,” write Jennifer Allen and Joshua Tucker in... “The way forward is to embrace creative research and to build methodologies that adapt to the current moment. Piccardi et al.

present a viable tool for doing that.” Reranking partisan animosity in algorithmic social media feeds alters affective polarization Today, social media platforms hold the sole power to study the effects of feed-ranking algorithms. We developed a platform-independent method that reranks participants' feeds in real time and used this method to conduct a preregistered 10-day field experiment with 1256 participants on X during the 2024 US presidential campaign. Our experiment used a large language model to rerank posts that expressed antidemocratic attitudes and partisan animosity (AAPA). Decreasing or increasing AAPA exposure shifted out-party partisan animosity by more than 2 points on a 100-point feeling thermometer, with no detectable differences across party lines, providing causal evidence that exposure to AAPA content...

This work establishes a method to study feed algorithms without requiring platform cooperation, enabling independent evaluation of ranking interventions in naturalistic settings. Similarly, it highlights the potential importance of utilising available objective measures of social media use. This is consistent with findings of a recent meta-analysis examining discrepancies between objective and self-report digital media use (Parry et al., 2022). The meta-analysis found only moderate correlations between self-report and objective use, and even weaker correlations between objective and problematic use measures (Parry et al., 2022). This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

People Also Search

Changing Algorithms With Artificial Intelligence Tools Can Influence Partisan Animosity.

Changing algorithms with artificial intelligence tools can influence partisan animosity. American Association for the Advancement of Science (AAAS) A new experiment using an AI-powered browser extension to reorder feeds on X (formerly Twitter), and conducted independently of the X platform’s algorithm, shows that even small changes in exposure to hostile political content... The findings provide d...

Although Many Explanations For How These Ranking Algorithms Affect Us

Although many explanations for how these ranking algorithms affect us have been proposed, testing these theories has proven exceptionally difficult. This is because the platform operators alone control how their proprietary algorithms behave and are the only ones capable of experimenting with different feed designs and evaluating their causal effects. To sidestep these challenges, Tiziano Piccardi...

In A 10-day Field Experiment On X Involving 1,256 Participants

In a 10-day field experiment on X involving 1,256 participants and conducted during a volatile stretch of the 2024 U.S. presidential campaign, individuals were randomly assigned to feeds with heightened, reduced, or unchanged levels of AAPA content. Piccardi et al. discovered that, relative to the control group, reducing exposure to AAPA content made people feel warmer toward the opposing politica...

What’s More, These Shifts Did Not Appear To Fall Disproportionately

What’s more, these shifts did not appear to fall disproportionately on any particular group of users. These shifts also extended to emotional experience; participants reported changes in anger and sadness through brief in-feed surveys, demonstrating that algorithmically mediated exposure to political hostility can shape both affective polarization and moment-to-moment emotional... “One study – or ...

Present A Viable Tool For Doing That.” Reranking Partisan Animosity

present a viable tool for doing that.” Reranking partisan animosity in algorithmic social media feeds alters affective polarization Today, social media platforms hold the sole power to study the effects of feed-ranking algorithms. We developed a platform-independent method that reranks participants' feeds in real time and used this method to conduct a preregistered 10-day field experiment with 125...